

.

Problem E1-Marking scheme Heat Conduction in a Copper Rod (10 points) Part A: The short copper rod (3.9 points)

A.1 (0.2 pt)	0.05 points if $112 > R_{env} > 108 \Omega$ $\Delta R_{env} = \pm 0.01\Omega (0.05 \text{ pt})$	0.1 pt
	This value should be calculated from this equation $\theta_{env} = \frac{R-R_0}{R_0 \alpha}$. Calculation of θ_{env} using the obtained results (0.05 pt) Calculation of the uncertainty $\Delta \theta_{env} = \pm 0.03$ (0.05 pt)	0.1 pt
A.2 (0.5 pt)	Missing measurement points less than 15 time (-0.04 each) For each interval out of range 8-12 seconds (-0.02 each) Wrong measurement of resistance (-0.04 each)	0.5 pt
A.3 (0.8 pt)	Graph (max 0.4) Data points are properly plotted. (0.3) Too small (-0.1) Missing of the quantities or units (-0.1) Line to determine the slope (0.1)	0.4 pt
	Reading of $\frac{\Delta R}{\Delta t}$ from the graph or calculator. $\frac{\Delta R}{\Delta t}$ is in range 0.0138 $\leq \frac{\Delta R}{\Delta t} \leq 0.0165 \frac{\Omega}{s} (0.1)$ Missing or incorrect units (-0.05)	0.1 pt
	Calculation of $\frac{\Delta \theta}{\Delta t} = \frac{1}{R_0 \alpha} \frac{\Delta R}{\Delta t}$ using the obtained result.	0.1 pt
	47 ≦ C_s ≦ 52 J/°C (0.1 pt) , 44 ≦ C_s ≦ 55 J/°C (0.05 pt) . Missing or incorrect units (-0.05)	0.1 pt
	Correct ΔC_s formula (0.05 pt) Calculation of the uncertainty $\Delta C_s = \pm 1 \text{ or } 2$ J/°C (0.05 pt)	0.1 pt
A.4 (0.5 pt)	Missing measurement points less than 10 time (-0.05 each)	0.5 pt
A.5 (0.7 pt)	Graph (max 0.4) Data points are properly plotted (0.3). Too small (-0.1) Missing of the axes or quantities or units (-0.1) Missing points (-0.04 each) Line to determine the slope (0.1)	0.4 pt
	$6.5 \times 10^{-4} \le \gamma \le 7.5 \times 10^{-4}$ 1/s (0.2 pt), $6 \times 10^{-4} \le \gamma \le 8 \times 10^{-4}$ 1/s (0.1 pt) Missing or incorrect units (-0.05)	0.2 pt
	Calculation of the uncertainty $\Delta\gamma$ (0.05 pt), Correct $\Delta\gamma$ formula (0.05 pt)	0.1 pt
A.6 (0.5 pt)	Missing measurement points less than 7 time (-0.05 each) For not covering a resistance range of 5 Ω , each 0.5 Ω (-0.02) Inconvenient distribution of data points (up to -0.1)	0.5 pt
A.7 (0.7 pt)	Graph (max 0.4) Data points are properly plotted (0.3). Too small (-0.1) Missing of the axes or quantities or units (-0.1) Missing points (-0.04 each) Line to determine the slope (0.1)	0.4 pt
	$10.68 \le F \le 0.72 aV(0.2) 0.66 \le F \le 0.74 aV(0.1)$ Missing or incorrect units	0.2 pt
	$\begin{array}{c} 0.00 \equiv L_g \equiv 0.72 \ ev \ (0.2), \ 0.00 \equiv L_g \equiv 0.74 \ ev \ (0.1) \ \text{Prissing of incorrect diffs} \\ (-0.05) \end{array}$	0.2 pt

Part B: The long copper rod (4.1 points)

B.1	Missing measurement points less than 7 time (-0.05 each)	0.4 pt
(0.4 pt)	$22 > \theta_1 - \theta_b > 15^{\circ}\text{C} and \theta_7 - \theta_b > 3^{\circ}\text{C} (0.1)$	

	Jraph (max 0.4) Data points are properly plotted (0.3). Too small (-0.1)	0.4 pt
(0.4 pt) M	Missing of the axes or quantities or units (-0.1)	
l` i∕ №	Missing points (-0.05 each) Line to determine the slope (0.1)	
I		
B.3 C	Calculation of $A^{(0)}$ using the obtained results. Missing or incorrect units(-0.05)	0.2 pt
(0.6 pt) 0	$0.046 \leq \lambda^{(0)} \leq 0.051 \left(\frac{1}{cm}\right)$ (0.3), $0.044 \leq \lambda^{(0)} \leq 0.053 \left(\frac{1}{cm}\right)$ (0.2)	0.3 pt
Μ	Missing or incorrect units (-0.05)	
С	Calculation of the uncertainty $\Delta\lambda^{(0)}$	0.1 pt
B.4 <i>B</i>	$B = Ae^{-2\lambda d}$ Correct equation	0.2 pt
(0.4 pt) C	Calculation of B(1) using the obtained results	0.2 pt
		[
B.5(0.4) Ir	ncorrect calculation (-0.05 each)	0.4 pt
B.6 G	Graph (max 0.4) Data points are properly plotted (0.3). Too small (-0.1)	0.4 pt
(1.0 pt) 🛛 M	Missing of the axes or quantities or units (-0.1)	
M	Missing points (-0.05 each) Line to determine the slope (0.1)	
C	Calculation of $A^{(1)}$ using the obtained results. Missing or incorrect units (-	0.2 pt
0	0.05)	
0	$0.054 \leq \lambda^{(1)} \leq 0.063 \left(\frac{1}{cm}\right) (0.3), \ 0.051 \leq \lambda^{(1)} \leq 0.068 \left(\frac{1}{cm}\right) (0.2)$	0.3 pt
M	Missing or incorrect units (-0.05)	
C	Calculation of the uncertainty $\Delta\lambda^{(1)}$	0.1 pt

.

.

B.7	Calculation of the uncertainty λ	0.2 pt
(0.9 pt)	Calculation of the uncertainty $\Delta \lambda$	0.1 pt
	Correct formula for h (0.1), Calculation of h using the obtained results (0.1)	0.2 pt
	Calculation of the uncertainty Δh	0.1 pt
	Correct formula for k (0.1), Calculation of k using the obtained results (0.1)	0.2 pt
	Calculation of the uncertainty Δk	0.1 pt

Part C: Measuring the unknown power (2.0 points)

C.1	Missing measurement points less than 7 time (-0.05 each)	0.3 pt
(0.4 pt)	$25 > \theta_1 - \theta_b > 15^{\circ}$ C and $\theta_7 - \theta_b > 10^{\circ}$ C (0.1)	0.1 pt
C.2	Graph (max 0.4) Data points are properly plotted (0.3). Too small (-0.1)	0.4 pt
(0.6 pt)	Missing of the axes or quantities or units (-0.1)	
	Missing points (-0.05 each) Plot a curve trough the data (0.1)	
	Find x_0 using the Quad mod on the calculator or find x_0 from graph (0.1)	0.2 pt
	24.5 $\leq x_0 \leq 25.5 \text{ cm}$ (0.1), 24 $\leq x_0 \leq 26 \text{ cm}$ (0.05)	
		-
C.3	Calculation by subtracting the results of part C and B and calculating the	0.6 pt
(1.0 pt)	slop of the line (0.6) Calculation by sinh and x_0 (0.4) Calculation by the	
	integral (0.4) Calculate the slope of 2 points (0.2) Another method (?)	
	$0.59 \leq \frac{P_3}{P_2} \leq 0.61 \ (0.3), \ 0.58 \leq \frac{P_3}{P_2} \leq 0.62 \ (0.2), \ 0.57 \leq \frac{P_3}{P_2} \leq 0.63 \ (0.1)$	0.4 pt
	Missing or incorrect units (-0.05) Calculation of the uncertainty P_3 (0.1)	